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Abstract. Structured illumination microscopy (SIM) has been widely applied in the superresolution imaging of
subcellular dynamics in live cells. Higher spatial resolution is expected for the observation of finer structures.
However, further increasing spatial resolution in SIM under the condition of strong background and noise levels
remains challenging. Here, we report a method to achieve deep resolution enhancement of SIM by combining
an untrained neural network with an alternating direction method of multipliers (ADMM) framework, i.e.,
ADMM-DRE-SIM. By exploiting the implicit image priors in the neural network and the Hessian prior in
the ADMM framework associated with the optical transfer model of SIM, ADMM-DRE-SIM can further
realize the spatial frequency extension without the requirement of training datasets. Moreover, an image
degradation model containing the convolution with equivalent point spread function of SIM and additional
background map is utilized to suppress the strong background while keeping the structure fidelity.
Experimental results by imaging tubulins and actins show that ADMM-DRE-SIM can obtain the resolution
enhancement by a factor of ∼1.6 compared to conventional SIM, evidencing the promising applications of
ADMM-DRE-SIM in superresolution biomedical imaging.
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1 Introduction
Utilizing spatial frequency modulation, structured illumination
microscopy (SIM) transfers the normally inaccessible high-
frequency information into measured low-frequency images with

moiré effect, and thus it can extract the superresolution image by
spatial frequency recombination, which breaks through the dif-
fraction limit barrier of the optical microscope.1 Featuring high
imaging speed, low excitation power, and high compatibility
for various fluorescent labels, SIM has been widely applied in
the superresolution imaging of biological specimens, especially
the fine structure of organelles, such as actin cytoskeleton,2 mi-
tochondria,3 lysosomes,4 and endoplasmic reticulum,5,6 and also
the dynamics of organelles, such as mitochondrial fission,7
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internalization of clathrin-coated pits (CCPs),8 and tubulin and
kinesin dynamics.9 However, the resolution of SIM with linear
illumination mode is only 2 times over that of wide-field micros-
copy, which reaches about 100 nm, because the maximal fre-
quency of structured illumination pattern is limited by the
diffraction. Thus, SIM is inferior to some other superresolution
techniques in spatial resolution, such as stimulated emission
depletion microscopy,10 photoactivated localization micros-
copy,11 or stochastic optical reconstruction microscopy,12 which
can obtain the resolution up to about 10 nm. By now, many meth-
ods have been reported to increase the spatial resolution of SIM.
For example, fluorescence saturation was utilized to induce non-
linear structured illumination for higher spatial frequency shift.13

Similarly, photoswitching proteins were used as the fluorescent
labels for nonlinear SIM with low excitation power.14 With these
methods, the nonlinear SIM with a resolution below 50 nm has
been realized, but unfortunately it comes at the expense of reduc-
ing the imaging speed. In addition, a sparse deconvolution
method (sparse-SIM) was proposed to further obtain the resolu-
tion enhancement of SIM while keeping the imaging speed by
employing the sparsity and continuity priors of biological
structures.15 Without the modification to the hardware device
or acquirement mode of SIM, sparse-SIM achieves almost two-
fold resolution enhancement compared with conventional SIM.
However, as an iterative deconvolution method, sparse-SIM is
greatly affected by the artificial selection of multiple parameters,
which are used to balance the weights of various priors. Therefore,
the image processing in sparse-SIM is time-consuming.

In the experimental acquisition of a fluorescent image, strong
background and noise are common issues. These issues may be
tolerated in normal microscopy analysis but can lead to severe
artifacts in the superresolution image reconstruction, which
make it difficult to distinguish the real structures and fake arti-
facts. The strong background mainly results from the out-of-
focus fluorescence and cellular autofluorescence, while the
strong noise often occurs in the image acquirement by the cam-
era, especially when the fluorescent photon number is limited by
the short exposure time or low excitation power. To further im-
prove the resolution of SIM under strong background and noise
levels, here we propose a deep resolution enhancement (DRE)
method by an untrained neural network associated with alternat-
ing direction method of multipliers (ADMM) framework,
termed as ADMM-DRE-SIM. An untrained neural network
with implicit priors is utilized as a generator for desired reso-
lution-enhanced image, and an image degradation model con-
taining optical transfer of SIM and additional background
map provides the criterion for updating the parameters of the
neural network. The untrained neural network is quite conven-
ient to obtain the resolution enhancement of SIM because no
training datasets are required (it is rather difficult to experimen-
tally acquire the training datasets containing the SIM images
and paired resolution-enhanced images). An iterative frame-
work of ADMM embedded with Hessian prior is used to opti-
mize the network by exploiting the intrinsic continuity of
biological structures. Based on these special designs,
ADMM-DRE-SIM realizes the resolution enhancement of
SIM under the strong background and noise while completely
preserving the advantage of SIM with high imaging speed.
Compared with conventional SIM, a resolution enhancement
by a factor of about 1.6 is experimentally demonstrated by im-
aging tubulins and actins in cells with ADMM-DRE-SIM.
Moreover, ADMM-DRE-SIM shows better performance in

the fidelity of biological structure compared to other deconvo-
lution methods, which is key for image analysis, and it will pro-
vide a powerful tool for the studies of organelle dynamics.

2 Methods
The resolution of the image acquired in wide-field microscopy
is restricted by the optical diffraction limit due to the finite aper-
ture of the objective. To exceed the resolution limitation, a struc-
tured illumination pattern is utilized to modulate the sample
image with spatial frequency shift in SIM. The recorded image
in SIM can be formatted in the frequency domain as

DðkÞ ¼ ½SðkÞ ⊗ EðkÞ�OðkÞ þ NðkÞ

¼ S
2

�
EðkÞ − m

2
Eðk − pÞe−iϕ − m

2
Eðkþ pÞeiϕ

�
OðkÞ

þ NðkÞ; (1)

whereDðkÞ is the spatial spectra of recorded image in SIM, SðkÞ
is the structured illumination pattern, EðkÞ is the spatial spectra
of fluorescent sample,OðkÞ is the optical transfer function (OTF)
of the microscopy system, NðkÞ is the noise during the image
acquirement, S is the max modulation intensity, m is the modu-
lation factor, p is the modulation frequency vector, and ϕ is the
modulation phase. The recorded images in SIM are linear com-
binations of the origin and frequency-shifted components.
Normally, the structured illumination patterns with three-step
phase shifts in three directions are required to acquire nine im-
ages in total, which are then processed to obtain a superresolu-
tion image by separating and recombining the frequency
components. Since the max frequency shift in linear SIM is close
to the bound of OTF, SIM can only acquire an equivalent OTF
twice as large as that of wide-field microscopy. The recon-
structed SIM image in the spatial domain can be seen as the con-
volution of fluorescence distribution and equivalent point spread
function (PSF) of SIM. The further resolution enhancement from
the reconstructed SIM image is similar to deconvolution micros-
copy,16 which increases the contrast and resolution of a wide-
field image. However, the resolution enhancement from the
SIM image is much more complex. The noise amplification
in the image reconstruction of SIM seriously hampers deconvo-
lution, which makes it difficult to converge. Considering the
strong background and noise levels, this problem becomes
tougher because the serious artifacts and distortion contaminate
the actual structures. High-fidelity image reconstruction for the
resolution enhancement in SIM is still limited by the amplified
noise as well as the strong initial background. Under the condi-
tion of strong fluorescent background and noise levels, the re-
constructed SIM image in the spatial domain can be written as

ISIM ¼ Isample ⊗ PSFSIM þ Gþ N; (2)

where ISIM is the reconstructed SIM image; Isample is the fluo-
rescence distribution of the sample; and PSFSIM is the equivalent
PSF of SIM, which considers the cut-off frequency bound of the
microscope and the frequency shift of structured illumination
patterns; G is the background distribution; and N is the noise
from the image acquirement and reconstruction. It should be
noted thatG and N correspond to the background and noise after
the image reconstruction of SIM. The background occupies
the low spatial frequency components. Therefore, the special
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frequency characteristic allows the extraction of the background
to some extent. A wavelet-based background subtraction was
proposed to handle this task.17,18 However, the background sub-
traction in the low-photon images easily causes structural defects
because some structures with the low fluorescence intensity are
overwhelmed in the background and noise.

To further improve the resolution of SIM under the strong
background and noise levels, we adopt a concept of deep image
prior (DIP), which indicates that the structure of a generator net-
work itself can capture lots of statistics priors of low-level image
for various tasks instead of learning from training datasets.19 The
untrained neural network incorporated with various physical mod-
els has shown to be a well-established tool in solving the image
reconstruction of computational imaging methods, such as coher-
ent phase imaging,20 digital in-line holography,21,22 ghost imag-
ing,23 and SIM.24,25 Here we achieve the further resolution
enhancement of SIM by the untrained neural network combining
with the background interrupted optical transfer model of SIM.
The implicit priors inside the neural network provide the bridge
between the available information in the SIM image and the higher
frequency information corresponding to the higher resolution.
Meanwhile, the optical transfer model containing the diffraction
limit in SIM and the background map is employed to supervise
the neural network and guarantee the image fidelity with back-
ground suppression. Furthermore, an ADMM framework em-
bedded with Hessian prior is used to optimize the parameters
of the neural network with high precision, which is different from
the previous work with only an untrained neural network.26

The flow chart of ADMM-DRE-SIM is shown in Fig. 1. The
original SIM image x0 is sent into the neural network with a U-net
structure to acquire a resolution-enhanced image fθðx0Þ. An im-
age degradation model, containing the convolution with equiva-
lent PSF of SIM and the additional background, is then used to
provide the estimation of the recorded image in SIM from the

original fluorescence distribution of the sample. In addition, a
pixel upsampling has been incorporated in the network, and a
downsampling process is correspondingly embedded in the im-
age degradation model, which is used to adjust the magnification
of the reconstructed image. The estimation can be written as

IEstimation ¼ fθðx0Þ ⊗ PSFSIM þm; (3)

where fθð:Þ is the neural network with the parameter θ to be op-
timized, and m is the estimated background map from the SIM
image. The equivalent PSF of SIM is estimated from the optical
parameters of the SIM system, considering the cut-off frequency
bound of the microscope objective and the frequency shift of
structured illumination spatial frequency patterns, which can
be expressed by the following equation as

PSFSIM ¼

2
642J1

�
2πmfNA·r

λ

�
2πmfNA·r

λ

3
75
2

; (4)

where J1 is the first-order Bessel function, λ is the fluorescence
wavelength, NA is the numerical aperture of the objective lens,
mf is the modulation factor used to modulate the equivalent NA
after SIM reconstruction, mf ¼ ð1þ kf∕kcÞ, kf is the structured
illumination frequency, kc is the cut-off frequency for acquisition,
and r is the radial space coordinate of object surface. The addi-
tional background map is estimated from the input SIM image
with wavelet transform.17,18 A “db6” wavelet base is used,
decomposing the signal into the seventh level. Once the estima-
tion is optimized to approach the input SIM image x0, the
resolution-enhanced image can be acquired. An ADMM frame-
work embedded with a Hessian prior is used to iteratively opti-
mize the parameters of the neural network. Generally, the

Fig. 1 Flow chart of ADMM-DRE-SIM for realizing the resolution enhancement of SIM.
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resolution enhancement of SIM can be converted into searching
for the optimal parameters of the neural network that satisfy the
minimization of the following question, and is given as

x� ¼ fθ� ðx0Þ; θ� ¼ arg min
θ

kfθðx0Þ ⊗ PSFSIM þm − x0k22
þ ρRHessian½fθðx0Þ�; (5)

where RHessian is the Hessian norm, ρ is the regularization param-
eter, and k:k2 is the L2 norm. The Hessian matrix can exploit the
continuity of biological structures as the prior knowledge and
provide a tool to constrain image restoration and suppress noise,
which has shown good performance in the image reconstruction
of SIM with structural fidelity and artifact suppression.4 Here, the
Hessian prior is used to constrain the parameter optimization of
the neural network. The Hessian matrix can be expressed as

RHessianðIÞ¼
Xn
i

kDIk1¼kDxxIk1þkDyyIk1þ2kDxyIk1; (6)

where Dxx, Dyy, and Dxy denote the discrete second-order deriv-
atives at the pixel i of the image I along the three axes of hori-
zontal, vertical, and diagonal directions, respectively. Based on
the ADMM framework, Eq. (5) can be transferred into the
following problem by introducing the auxiliary variable v and
is written as

arg min
θ;v

kfθðx0Þ ⊗ PSFSIM þm − x0k22
þ ρRHessianðvÞ; subject to Dfθðx0Þ ¼ v: (7)

By further introducing the auxiliary variable u, Eq. (7) can be
divided the minimization into the following subproblems and is
given as

θkþ1 ¼ arg min
θ

kfθðx0Þ ⊗ PSFSIM þm − x0k22

þ β

����Dfθðx0Þ −
�
vk − uk

β

�����
2

2

; (8)

vkþ1 ¼ arg min ρ
v

RHessianðvÞ þ β

����v −
�
Dfθkþ1ðx0Þ þ

1

β
uk
�����

2

2

;

(9)

ukþ1 ¼ uþ β½Dfθkþ1ðx0Þ − vkþ1�: (10)

The subproblem in Eq. (8) is similar to the traditional DIP
solution by forcing Dfθðx0Þ to approach vk − uk∕β with the
neural network; here the parameter θ is optimized by a gradient
descent method.27,28 In Eqs. (9) and (10), the second-order deriv-
atives in different directions are separately processed. By the
alternate iterative optimization, a resolution-enhanced image
with low noise and background removal can be obtained. It
is worth mentioning that ADMM-DRE-SIM can optimize the
parameters of the network in a self-supervised mode without
the training datasets.

3 Results and Discussion
To demonstrate the resolution enhancement of SIM by ADMM-
DRE-SIM, a theoretical simulation is conducted. A simulated
image containing the curves with width of 32.5 nm is used
as the ground truth. The wide-field image is generated by the
convolution of the ground truth and the PSF of a microscope
with the NA of 1.2 and fluorescence wavelength of 560 nm.
Nine images are simulated by sequential structured illumination
and PSF convolution based on the ground truth. A fairSIM al-
gorithm is utilized to recover the superresolution SIM image.29

Then, the SIM image is further processed by ADMM-DRE-SIM
to obtain a resolution-enhanced image. All the image processing
is performed on a server with Intel i9-10920X, 192 GB of RAM
and NVIDIA GeForce RTX3090. The simulation results are
shown in Fig. 2, and the corresponding spatial frequency spectra
and the intensity profiles along the labeled lines are also pro-
vided. As can be seen, only the low-frequency components
are preserved in the wide-field image due to the limited OTF
of the microscope, which lead to low spatial resolution, and
the curves along the labeled line are seriously blurred. The

Fig. 2 Simulation results for the resolution enhancement of SIM by ADMM-DRE-SIM. (a) The
ground truth, (b) wide-field, (c) SIM, and (d) ADMM-DRE-SIM images of the simulated structures,
associated with the corresponding frequency spectra and intensity distributions along the labeled
lines in the insets. The insets are the enlarged views of the selected areas with yellow squares.
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SIM image has a frequency bound twice that of the wide-field
image, and the intensity profile of the curves can be distin-
guished with difficulty. However, the ADMM-DRE-SIM image
has a greatly extended frequency bound, which is close to the
ground truth, and the adjacent curves can be clearly distin-
guished.

In actual experiments, the background and noise are inevi-
table, and thus the recorded images with structured illumination
in SIM will be contaminated. Although SIM can suppress the
background to some extent, heavy noise will cause vague arti-
facts during SIM reconstruction. As for the resolution improve-
ment in noisy conditions, the noise will mislead the optimization
direction in iterative calculations. The heavier the noise is, the
more effort the algorithm takes to cover the noise. This leads to
a bias between the reconstructed result and the real structure,
which finally results in serious artifacts. Besides, the more
resolution enhancement is conducted, the more sensitive to
noise the reconstructed result is. The SIM images involving
background and various noise levels are processed to test the
resolution enhancement performance by ADMM-DRE-SIM.
The simulated results are shown in Fig. 3; here, a uniform
background combined with Gaussian noise σ ¼ 0.1, 0.3, 0.5,
and Poisson noise mixed with Gaussian noise σ ¼ 0.5 are,
respectively, added in the recorded image with structured illu-
mination in SIM. For comparison, some traditional deconvolu-
tion algorithms are also utilized to process the SIM image,
including Wiener deconvolution,30 Richardson–Lucy total varia-
tion (RLTV) deconvolution,31 and Hessian deconvolution.32

The SIM images are also reconstructed by fairSIM, associated
with the resolution-enhanced images by various traditional
algorithms and ADMM-DRE-SIM, as shown in Fig. 3(b).

Obviously, ADMM-DRE-SIM is able to improve the resolution
of SIM and simultaneously suppress the background and noise.
In contrast, other deconvolution algorithms bring serious arti-
facts with slight resolution enhancement. In addition, structural
similarity values of the images processed by Wiener, RLTV,
Hessian deconvolution and ADMM-DRE-SIM in the condition
of Poisson noise mixed with Gaussian noise σ ¼ 0.5 are calcu-
lated to be 0.07, 0.10, 0.09, and 0.68, respectively. In a word,
ADMM-DRE-SIM shows good performance in the resistance to
the background and noise during the image processing of
resolution enhancement, which is very useful in processing
the experimental SIM images.

Furthermore, two experiments are performed by imaging the
intracellular structures with a commercial SIM system (Nikon,
N-SIM) to further demonstrate the resolution enhancement
capability of ADMM-DRE-SIM. The exposure time is set as
200 ms with illumination power of about 22.9 mW. First, the
tubulins in mouse embryonic fibroblast (MEF) cells are inves-
tigated, as shown in Fig. 4(a). Tubulin is part of the cytoskeleton
of cells and has a filamentous distribution with large space.
Compared to SIM, ADMM-DRE-SIM provides finer structural
details of the tubulins, and the overlapped fibers can be distin-
guished more clearly. Meanwhile, the intensity profiles along
the labeled line also intuitively show the resolution enhance-
ment. To quantitatively determine the resolution enhancement,
a Fourier ring correlation (FRC) method is utilized to character-
ize the spatial resolution, and the calculated results are given in
Fig. 4(b). The resolution is improved from 145 nm of SIM to
82 nm by ADMM-DRE-SIM, which indicates that ADMM-
DRE-SIM is an effective technique to improve the resolution
of SIM. Second, the actins in NIH/3T3 cells are further

Fig. 3 Simulation results for the effects of background and noise levels on the resolution enhance-
ment of SIM by various algorithms. (a) The ground truth, wide-field, SIM, and ADMM-DRE-SIM
images of the simulated structures without the background and noise. (b) The SIM, Wiener
deconvolution, RLTV deconvolution, Hessian deconvolution, and ADMM-DRE-SIM images with
a uniform background combined with Gaussian noise σ ¼ 0.1, 0.3, 0.5, and Poisson noise mixed
with Gaussian noise σ ¼ 0.5.
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investigated, as shown in Fig. 4(c). Different from the tubulins,
the distribution of actins in cells is much denser, and the fiber is
thinner. Thus, the images of actins show a stronger background
due to the out of focus fluorescence, which bring the difficulty
for further resolution enhancement. Similarly, ADMM-DRE-
SIM shows clearer spatial structure of actins compared with
SIM. Importantly, ADMM-DRE-SIM can greatly suppress
the artifacts of the SIM image due to the calculation error
of the background in the image reconstruction. According to
the calculated results of FRC in Fig. 4(d), the resolution of
ADMM-DRE-SIM is enhanced to 85 nm from 140 nm of
SIM. Based on our experimental observations in Fig. 4,
ADMM-DRE-SIM can realize the resolution enhancement
by a factor of about 1.6.

To specifically exhibit the superiority of ADMM-DRE-SIM
in suppressing the background and noise, the SIM images of
tubulins with strong background or low signal-to-noise ratio
(SNR) are separately collected and processed in experiment.
As shown in Fig. 5(a), the tubulin fibers in the SIM image
are seriously contaminated by the background, although SIM

has the function of optical sectioning.33 The strong background
results from imperfect fluorescence staining during sample
preparation. The resolution-enhanced images by conventional
deconvolution algorithms of RL, RLTV, and Hessian are all af-
fected by the background and therefore contain severe artifacts.
On the contrary, ADMM-DRE-SIM can eliminate the back-
ground and keep the fiber structures with enhanced resolution
because the image degradation model in ADMM-DRE-SIM has
separated the background. And the sparse deconvolution has
similar performance. As shown in Fig. 5(b), the SIM image
has quite a low SNR due to the recorded nine images, with struc-
tured illumination being acquired at high speed with a short
exposure time (0.5 ms),4 which results in a great challenge for
further resolution enhancement. In the same way, the noise is
greatly amplified using conventional deconvolution algorithms
to process the SIM image with low SNR, and the artifacts are
very serious and almost confused with the tubulin fibers. In con-
trast, ADMM-DRE-SIM succeeds in suppressing the artifacts
and acquiring a resolution-enhanced image with high-fidelity
structures.

Fig. 4 Experimental results for the resolution enhancement of SIM by ADMM-DRE-SIM. (a) The
wide-field, SIM, and ADMM-DRE-SIM images of tubulins in MEF cells and (c) actins in NIH/3T3
cells, together with the corresponding intensity distributions along the labeled lines in the insets.
The FRCs of the SIM and ADMM-DRE-SIM images for (b) tubulins and (d) actins.

He et al.: Untrained neural network enhances the resolution of structured…

Advanced Photonics Nexus 046005-6 Jul∕Aug 2023 • Vol. 2(4)



To verify the superiority of ADMM-DRE-SIM in structural
fidelity, the SIM image of tubulins with strong background6 is
processed by ADMM-DRE-SIM and modified ADMM-DRE-
SIM; here the modified ADMM-DRE-SIM means that the back-
ground estimation is directly subtracted from the input SIM im-
age, and the image degradation model has only the convolution
of PSF of SIM. The SIM image in Fig. 6(a) has the strong back-
ground, and the background map can be estimated by the wave-
let transform, as shown in Fig. 6(b). The background subtracted
SIM image has obvious discontinuity, as shown in Fig. 6(c).
As shown in Figs. 6(f) and 6(g), ADMM-DRE-SIM and the

modified version both can achieve the resolution enhancement
with sharper profiles compared with the SIM image. The direct
subtraction of the estimated background map leads to the acci-
dental removal of the useful structures, as shown in Fig. 6(e) and
therefore it is very difficult to recover the missing structures
during the image processing of resolution enhancement without
the additional information, as shown in Fig. 6(f). However,
ADMM-DRE-SIM addresses this issue by inserting the back-
ground estimation into the image degradation model instead
of the direct subtraction, where the accidental removal of the
structures can be eliminated during the iterative optimization

Fig. 5 Experimental results for the effects of the strong background and low SNR on the resolution
enhancement of SIM by various algorithms. (a) SIM image of tubulins with strong background.
Left, the stitched image with the SIM image on the top and the ADMM-DRE-SIM image on the
bottom; right, the enlarged SIM image marked with the yellow square and the images processed
by RL, RLTV, Hessian, sparse deconvolution, and ADMM-DRE-SIM algorithms, respectively.
(b) SIM image of tubulins with low SNR. The image arrangement is the same as (a).

Fig. 6 Comparison of ADMM-DRE-SIM and modified ADMM-DRE-SIM in structural fidelity.
(a) SIM image of tubulins; (b) estimated background map; (c) image by directly subtracting the
estimated background map from the SIM image. (d)–(g) The SIM, background subtracted SIM,
modified ADMM-DRE-SIM, and ADMM-DRE-SIM images for the selected area marked with
the yellow square, respectively.
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of the network for the resolution enhancement. The resolution-
enhanced image in Fig. 6(g) by ADMM-DRE-SIM shows the
higher fidelity with fewer missing structures compared with
the image processed by modified ADMM-DRE-SIM with direct
subtraction of background estimation in Fig. 6(f). By compari-
son, it is obvious that ADMM-DRE-SIM has the stronger
robustness and can preserve the structural information while
removing the background and noise.

For the superresolution imaging of small intracellular struc-
tures, the pixel size of the camera is also an important factor for
the final imaging performance. The smaller pixel size can con-
tribute to the higher resolution bound, while it also leads to the
lower SNR, and therefore the pixel size of the camera used in
superresolution imaging is usually a few micrometers. However,
the pixel effect sometimes results in a discrete profile of the
superresolution structures. To acquire a resolution-enhanced im-
age of the finer structures with smooth profile, a 2× upsampling
is embedded in the front of the neural network. In this way,
a 2× enlarged superresolution image with more details can be
acquired. The CCPs, which play an important role in transport-
ing proteins between organelles, have ring shapes, and it is dif-
ficult to be recognized in wide-field microscopy due to its small
size. To demonstrate the performance of ADMM-DRE-SIM
with upsampling, the CCPs are first imaged by SIM,6 and then
processed by ADMM-DRE-SIM with and without 2× upsam-
pling, respectively. As shown in Fig. 7(a), some CCPs show
the ring shape in SIM, while some others have the ball shape
because of the nonuniform size. By the image processing of
ADMM-DRE-SIM, the background is suppressed and the ring
shape of most CCPs can be visualized through the resolution
enhancement. As can be seen in the enlarged images of the
selected area in Figs. 7(b) and 7(c), ADMM-DRE-SIM can
extract the ring shape from the ball shape of the SIM image,
and ADMM-DRE-SIM with 2× upsampling can further provide
a smoother and finer structure, which will be very helpful for
the analysis of fine structures and functions.

As shown above, ADMM-DRE-SIM shows a powerful abil-
ity to transfer the resolution-limited SIM image to the resolu-
tion-enhanced image by bridging the low and high frequencies

with the implicit priors from the network and Hessian continu-
ity. Meanwhile, an inner image degradation model containing
the equivalent PSF of SIM and background map offers the re-
sistance to the strong background. It should be pointed out that
the image degradation model is utilized in each iteration during
the optimization to maintain the structural integrity because
a simple subtraction of the background estimation may lead to
the structural defects, especially under the low SNR condition.
ADMM-DRE-SIM not only realizes the resolution enhance-
ment of SIM but also retains the advantages of SIM involving
high imaging speed, low photo-damage, and wide applications
for various fluorescent labels. Therefore, ADMM-DRE-SIM
provides a well-established tool to capture the high-speed dy-
namics of finer structures, which will have important applica-
tions in many biological areas, such as organelle dynamics34

and cell metabolism.35 However, ADMM-DRE-SIM has also
some limitations. The imaging degradation model is based on
the premise of uniform PSF across the whole image, which is
an ideal situation and not very consistent with actual experi-
ments; thus the bias may induce uneven resolution enhancement.
This issue can be addressed by employing space-variation PSF.
In addition, the SIM images in this work are reconstructed by
fairSIM, which is a classic algorithm without the priors, and
so the effect of resolution enhancement by ADMM-DRE-SIM
is obvious due to the use of implicit priors. If the SIM images
are reconstructed by TVSIM36 or Hessian-SIM,4 which have
already exploited the priors, the resolution enhancement ability
of ADMM-DRE-SIM will be slightly reduced.

4 Conclusions
In summary, we have developed an ADMM-DRE-SIM to fur-
ther improve the resolution of SIM by an untrained neural net-
work optimized with an ADMM framework. By incorporating
an image degradation model containing equivalent PSF of SIM
and additional background map, ADMM-DRE-SIM can signifi-
cantly improve the resolution of SIM even under the condition
of strong background and noise levels. A resolution enhance-
ment by a factor of about 1.6 was experimentally demonstrated
by the superresolution imaging of tubulins and actins in cells.

Fig. 7 Experimental results for the resolution enhancement of SIM by ADMM-DRE-SIM with
2× upsampling. (a) The stitched image of CCPs with the SIM image on the left and the
ADMM-DRE-SIM image on the right. (b) and (c) The SIM, ADMM-DRE-SIM, and 2× upsampling
ADMM-DRE-SIM images for the selected areas in panel (a), associated with the intensity distri-
butions along the labeled lines.
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Possessing the resolution enhancement ability while maintain-
ing the intrinsic advantages of SIM, ADMM-DRE-SIM can pro-
vide a flexible and robust tool for studying the high-speed
dynamics of biological fine structures, which will greatly pro-
mote the development of biomedical imaging. Furthermore, by
inserting the imaging degradation model of three-dimensional
(3D) SIM37 into the framework of ADMM-DRE-SIM, 3D
resolution enhancement can also be achieved. Additionally,
ADMM-DRE-SIM is not limited to the resolution enhancement
of SIM. The superresolution microscopy images acquired by
some other techniques can also be further processed to obtain
the higher resolution once the corresponding equivalent PSF is
provided, for example, confocal spinning-disk,38 two-photon,39

and expansion microscopy.40

Data and Code Availability
The data and code presented in this study are available from the
corresponding author upon request.
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